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This paper reports the development of a time-accurate method for prediction of acoustics
in lined ducts. The multi-dimensional Euler equations are dimensionally split into a system
of uni-directional simple wave equations, which are discretized and solved using an implicit
compact high order "nite-di!erence scheme. The split equations are closed and coupled
through the concept of impedance at domain boundaries. Time-domain extensions of the
impedance boundary condition and their e$cient implementation are introduced for
broadband and monotone waves. The method is benchmarked by the modal solution of
a monopole in the lined duct, and used to investigate wall interference on the acoustic "elds
of realistic sources. Excellent agreement is found in the comparison with classical solutions,
and the discrepancy found in the comparison with experiment is ascribable to experimental
uncertainty. ( 2000 Academic Press
1. INTRODUCTION

Duct acoustics is an area of continuous interest for its theoretical and practical importance.
The increased requirement for quieter turbomachinery [1, 2], wind-tunnel testing
environments [2}5], ventilation systems, public halls and transport tunnels [6] calls for
a better understanding of the propagation of complex noise sources and e!ective techniques
for their prediction and abatement under realistic conditions. Low-frequency acoustics in
simple acoustically lined ducts or small enclosures of circular or rectangular cross-section
without a mean #ow is well understood and predicted through the classical theory of modal
expansion [7}9]. Various methods, "nite element, boundary element, and "nite di!erence
(FEM, BEM, FDM), have been employed to determine modal pro"les when mean #ow
e!ects, temperature gradients, variable cross-sections, non-linear e!ects, arbitrary shapes,
or acoustical treatments of ducts are considered [10}14].

For higher frequency, larger con"nements, more complex liners or wall geometry,
variable cross-sections, and realistic sources, the identi"cation of the large amount of modes
and modal pro"les needed becomes increasingly di$cult and ine!ective [12]. Eversman
and Baumeister [15] proposed a "nite element model to simulate the acoustic "eld of
a propeller in a circular wind tunnel with solid walls. Mosher developed a BEM model
(panel method) to investigate wall e!ects on harmonic sources in an acoustically lined
rectangular wind tunnel, but found substantial deviations between the predicted [4] and
measured values [3] towards the tunnel walls where wall e!ects dominate. For low
0022-460X/00/440667#15 $35.00/0 ( 2000 Academic Press
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absorption or low wave numbers, the model gave poor attenuation predictions, which were
attributed to the inadequacy in the locally reactive impedance wall assumption used in the
model. In addition, the formulation of frequency-domain methods such as BEM or FEM
relies on the increasingly ine!ective and inaccurate modal expansions for the
implementation of a frequency-dependent, non-local radiation boundary condition for
higher frequencies or larger con"nements. Ray tracing is well established but only
applicable for very high frequencies. For middle-frequency ranges in large enclosures such
as a concert hall where wave behaviors are still dominant and a large number of modes are
necessary, Botteldooren [16, 17] proposed a direct time-domain "nite-di!erence approach.

Considering that many unsteady phenomena such as the shedding of vortices from a blu!
body are impulsive in nature and their e!ects are often transient, local, and non-linear, the
assumption of a harmonic "eld restricts the study of these phenomena. Time-domain
methods have been developed for a wide range of #ow conditions in the wind tunnel,
addressing especially the e!ects of body geometry and #ow non-linearity. These methods,
however, often su!er from the added arti"cial damping and spurious dispersion for scheme
stability and robustness, and their applications are primarily as a means towards steady or
quasi-steady phenomena. A critical problem in their application to unsteady phenomena is
the implementation of long-time stable, numerically accurate, and physically sound
radiation and impedance boundary conditions. Baumeister [11] applied a second order
time-domain "nite-di!erence scheme to solve the wave equation, and remarked that
a transient solver should need smaller storage for impedance boundaries than
frequency-domain methods. Davis [18] introduced the low-dispersion "nite-di!erence
scheme for transient computation of acoustic pulses in a pipe with a time-equivalent
impedance model for the open end. Botteldooren applied a second order leapfrog scheme
on quasi-uniform rectangular grids with a simple time-equivalent impedance model to
simulate low-frequency room acoustics [16, 17]. The treatment of realistic boundaries has
been a critical issue for time-domain methods. Neither Davis nor Botteldooren addressed
issues in their implementation of the impedance boundary condition. Tam and Auriault
[19] pointed out the instability problem in the implementation of time-domain
impedance-equivalent boundary conditions, and demonstrated the construction of stable
impedance-dependent boundary schemes. OG zyoK ruK k et al. [20] devised time-domain
impedance operators via the z-transform and successfully applied their method to predict
the decay of waves in a two-dimensional #ow impedance tube. Reichert and Biringen [21]
lumped the liner and bias #ow e!ects as a source term in a time-domain duct model for
application in noise suppression of jet engine nacelles. Selamet et al. [22] proposed
a one-dimensional "nite-di!erence scheme for non-linear acoustics and used it successfully
for simulation of acoustic silencers.

Recently, Fung et al. [23] developed a new class of implicit, high order compact
schemes for computation of waves. Their method reduces the linearized multi-dimensional
Euler equations into a system of simple waves. In this formulation changes of pressure are
shared among the modes and respective boundary conditions provide additional couplings.
Not only can multi-dimensional problems be dimensionally split for e$cient inversions, the
implementation of realistic boundary conditions also bene"ts from the characteristics
clarity in the split system. The robustness and accuracy of their approach have been
demonstrated in a series of numerical experiments and benchmarking problems. The
approach was further extended to include arbitrary geometry on rectilinear grids [24] and
most recently time-domain impedance-equivalent boundary conditions [25].

We will outline in the following the formulation and discretization as a general approach
to the three-dimensional aeroacoustics problem, discuss the implementation of
time-domain impedance boundary conditions, and develop a method for prediction of wall
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e!ects on the three-dimensional acoustic "eld of harmonic sources in lined ducts. The
method will be benchmarked and its e$ciency compared with an approximated analytic
solution of modal expansion. Comparisons with the numerical and experimental results of
Mosher [3, 4] will also be presented.

2. FORMULATION

For small disturbances in an inviscid, adiabatic #ow the Euler equations can be separated
into a part governing the steady homentropic mean #ow:
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Following Fung et al. [23], equation (3) is split into three equation sets:
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which can be solved in series and arbitrary order. This splitting may be understood from
considering the contributions of the spatial variations A
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equation (3) to the temporal advancement L;/Lt. These contributions can be split into
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into parts in the respective directions x, y, and z as
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and the linearity of equation (3) allows lumping of these separable directional e!ects into
equation (4). Coupling may be strong when (B
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treatments of these source-like terms could improve the e$cacy of the split system, but are
beyond the scope of our consideration here.

It should be noted that this equation form, equation (4), known as fractional steps was
advocated in pioneering works by Yanenko [26] and shown to be equivalent to the unsplit
form for the simple wave equation. The di$culty was, however, in the implementation of
numerically stable time-accurate physically meaningful boundary conditions through
which e!ects from all variables are in various degrees coupled. Each directionally split set
consists of four "rst order equations which are to be solved for the four variables subject to
four spatial constraints to be imposed at the two ends in each direction of the solution
domain. Appropriate speci"cation of boundary condition becomes the critical issue.
Ill-posed problems often imply solution instabilities, which can be suppressed by some form
of damping changing e!ectively the order of the equations to second to allow speci"cation
of otherwise redundant boundary conditions. Damping has detrimental e!ects for waves,
and must only be used when the e!ects are known and acceptable.
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density, velocity, and temperature. The principal modes w
k
, k"1}4, are weakly coupled

through D
x
;, which is zero for a uniform mean #ow and can be treated explicitly,

depending on the accuracy requirement and degree of mean-#ow non-uniformity.
Each principal mode w
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The choice of two solution levels, from n to n#1, simpli"es the data storage, but the
resultant schemes are in general limited to second order accurate in Dt, although fourth
order is achievable in special cases. If the three-point compact PadeH approximation, JN"3
in equation (6), is used for the spatial derivatives of equation (5) and the coe$cients in
equation (6) are chosen as those for the C3N of Fung et al. [23], the resultant tri-diagonal
matrix can be easily solved using standard inversion routines.

For waves in particular, solution accuracy and stability also depend on the choice of
coe$cients and values of wn`1

j
for closure of equation (6) at the bounding points of a "nite

domain. A straightforward extrapolation of interior values to represent end values would
lead to algorithmic instability. The sign of j

k
in equation (5) at a boundary determines the

ways the coe$cient matrix in equation (6) should be constructed. A positive eigenvalue j
k

implies that the corresponding wave w
k
as a #ow of information is moving from the left to

the right boundary, and vice versa. Regardless of left or right, if from a direction inside the
computational domain, w

k
at a boundary point should be determined in such a way as not

to have any immediate e!ect on the computation of the neighboring values, e.g., the
characteristic method proposed in reference [23]. If from a direction outside of the
computational domain, the value of w
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or a condition on this variable at a domain

boundary must be given. The "rst two eigenvalues j
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in equation (5) correspond to
convection of vortical disturbances. Their corresponding w

k
should be prescribed as

boundary values or obtained from the upstream interior. The other two correspond to
acoustic modes, [u#p, u!p]T, which should be coupled at a physical or numerical
boundary when j

3, 4
are of opposite signs. This type of boundary condition has been the

most di$cult to treat and the object of numerous studies. In the most general sense,
the coupling between the two acoustic modes at a boundary can be characterized by the
concept of impedance, whose forms and implementations will be discussed in the following
section. If the characteristics of the acoustic modes at a boundary are of the same sign
(supersonic, ;

0
'C

0
), again the presence of a boundary would have no consequence and

the acoustic modes can be treated simply as convective e!ects with either given or
extrapolated upstream values.

4. IMPEDANCE BOUNDARY CONDITIONS

The classical concept of impedance Z(u)"pL /uL is a simpli"ed model de"ned in the
frequency domain (the are( te denotes Fourier components with time factor e*ut) to
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characterize the re#ection of plane harmonic waves from a wall. It has been demonstrated
that a direct operational inversion of Z(!iL/Lt) would, in general, result in unstable
temporal operators [25], whereas the inversion of the corresponding re#ection coe$cient

=K (u)"
1!Z

1#Z
, (7)

which relates the domain entering wave uL ~ (with the right boundary assumed) to the
domain-exiting wave uL ` as in uL ~"=K (u)uL ` (uL $,uL $pL ), corresponds to the stable
time-convolution process
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which describes a class of Helmholtz resonator-type sound absorptive materials of constant
resistance, mass-like reactance at high frequencies, and spring-like reactance at low
frequencies [7] is suitable for a discussion on the construction of time-domain impedance
equivalent boundary conditions and su$cient to model re#ections of harmonic waves. The
algebraic form of equation (8) leads to the broadband re#ection impulse:
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H(t) is the Heaviside function, and d(t) the Dirac delta function. Thus, the re#ected wave at
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is needed for evaluation. The integration length ¹
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is inversely proportional to the decay of
the imaginary part u
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for the coupled acoustic modes in equation (5).
Since the formulation in the present method reduces the multi-dimensional Euler

equations into a system of one-dimensional equations, the application of the boundary
condition is the same as the one-dimensional case. In Cartesian co-ordinates the velocity in
u$ is simply the normal component, e.g., w on the grid plane x}y. The concept of
impedance, or re#ection coe$cient, may also encompass other admissible boundary
conditions for the Euler equations, including for solid wall=K "!1, for plane waves at the
incident wave angle h with a free-air boundary=K "(cos h!1)/(1#cos h), and for the open
ends of a duct=K +0 as cos h+1.

5. POINT SOURCES

Sources in the present study are modeled as distributed ones for numerical smoothness.
The following Gaussian distributed source has been shown e!ective in representing
a monopole [27]:
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a small but smooth distribution, k the wave number, and e(kWh)2@4 the normalizing factor to



A TIME-DOMAIN METHOD FOR DUST ACOUSTICS 675
give an integrated source magnitude of unity. Similarly,
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represents a point dipole of unit strength in the direction n. The half-pulse-width to
wavelength ratio =M
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/j for monopole representation can be a very small value
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"0)0751 in this paper). A larger value is needed (=M
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"0)2375) for a dipole.

6. BENCHMARKING

We now demonstrate the e!ectiveness of the time-domain method for duct acoustics. For
assessing the e!ects of wall interference on unsteady experiments in acoustically lined wind
tunnels, Mosher [3] conducted acoustic measurement in a rectangular concrete duct with
foam-lined side walls and anechoic end terminations, Figure 1. The inner dimensions of the
duct are 240A]46A]94A, with the radiation ends at x"M0, aN and four impedance sidewalls at
y"M0, bN and z"M0, cN. Before comparing with experimental and other results, the present
method is "rst benchmarked with the well-known modal solution of Morse and Ingard [7].
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Figure 1. Duct geometry and dimensions in inches: (a) front view; (b) top view.
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with a positive imaginary part. The wave numbers q
m
"!2ig

m
are found by solving the

wall constraint equations:
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tanh(ng

m
)"ihe*u

g
m
coth(ng

m
)"ihe*u

for even m,

for odd m
(14)

with he*u"kb/(2nZ). The identi"cation of eigenvalues q
m

from equation (14) involves
cumbersome iterative processes [8}10, 12, 28]. Here we solve the equivalent ordinary
di!erential equations,

dg
m

dh
"G

ie*u coth2(ng
m
)

sinh(ng
m
) coth(ng

m
)#ng

m
ie*u sinh2(ng

m
)

sinh(ng
m
) coth(ng

m
)!ng

m

for even m,

for odd m

with initial values q@
0
"!iJ2ikb/(Z@n2), q@

m
"m!2ikb/(mZ@n2) for mO0, and Dkb/Z@D;1.

Figure 2 shows a comparison of excess pressure de"ned as 20 log(4n dpL /k) in dB, in the
duct over that in free air due to a monopole at (x , y , z )"(96A, 20A, 42A). The variations
Figure 2. Comparison of predicted (** : ppw&25, #: ppw&17) and analytical (n: 453 modes in y and 1000
modes in z) excess pressure distributions for f"270)38 Hz and Z"1)241!7)27i: (a) u@"03; (b) u@"1803;
(c) u@"2703.

s s s
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with distance d from the source on the plane 1)0 inch in front of the source at angles u@"0,
1803 and 2703 (with respect to the negative z-axis, Figure 1) are shown, respectively, in
Figures 2(a)}2(c). Excellent agreement with the modal solution is evident. A "ne grid of 25
points per wavelength (ppw) in each co-ordinate was found to be amply adequate. A coarser
grid of 17 ppw gave e!ectively the same results except near some nodes of the standing wave
due to grid resolution. The modal solution at this frequency (270)38 Hz) was represented by
453 modes in y and up to 1000 modes in z, and took nearly 6 times longer to compute than
that using the present time-domain method on the "ner grid. The minimum numbers of
modes for a solution accurate to 3 dB are 125 in y and 300 in z, for which the computing
time is slightly more than that for the time-domain method.

7. WALL INTERFERENCE IN RECTANGULAR DUCT

In the experiment of Mosher [3], sound sources are modeled as the superposition of
a monopole and a dipole in the y direction at (x

s
, y

s
, z

s
)"(96A, 21)7A, 43A). The analytical

pressure expression in free space (with time factor e~*ut) is

pL (r, u, h)"A
0
h
0
(kr)#A

1
h
1
(kr)cos h,

where r is the distance from source to observer, h the elevation angle with the #y-axis,
u the azimuth angle about the y-axis, and h

n
(kr) the nth order spherical Bessel function. The

corresponding non-dimensional time-domain monopole and dipoles are

fo"RealA
4nA

0
uk

e~*utB, f
x
"f

z
"0, f

y
"RealA

4nA
1

ik2
e~*utB.

The experimental data given in Mosher [3] were normalized by the reference pressure
near the source point and expressed in excess pressure in the duct over that in the anechoic
chamber in dB. Only the relative magnitudes and phases between the two kinds of sources
are relevant for comparison. Table 1 lists the source strengths and impedance values used in
Mosher's two cases of study. The values listed in reference [3, p. 46] are for harmonic
components of e~*ut. They should correspond to reactance of the opposite sign for our
computation here. However, when the original values were used, the computed attenuation
of excess pressure (triangles in Figure 3) towards the open ends did not agree with the
measured values (circles) but had similar behaviors as those (- -# - -) predicted by Mosher.
When the opposite sign was used, the agreement in both cases was excellent (solid line),
suggesting an error in the published values.
TABLE 1

Cases of study

Frequency Wave number Speci"c impednace Source strength
(Hz) (1/m) Z

343)7 4)9428 1)241!7)27i A
0
"0)0216#0)1519i

A
1
"0)0022#0)0171i

723)3 13)223 0)414!2)875i A
0
"0)1664#0)3727i

A
1
"0)0098#0)1109i
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Figures 3, 4(a) and 4(b) compare excess pressure distributions for the lower-frequency
case. The results using the present method (solid lines) are in better agreement with the
experiment (circles) than those computed by Mosher (- -# - -). In the directions away from
the source towards the tunnel ends (Figure 3), the pressure predicted by the present method
agrees well with the measured values, whereas the panel method gives much lower
magnitudes. Since the source is located 1)3 inches not symmetrically below the duct center
axis, the variations toward the lower and upper walls (Figure 4(a) and 4(b)), are substantially
di!erent, showing a high degree of phase sensitivity. The predictions by the present method,
albeit with some phase shift, give a much better agreement with the experiment than those
of Mosher, which deviate in the opposite direction of the experiment and attenuate
at a much faster rate towards the duct ends. Results for the higher frequency case
(Figure 5) draw similar conclusions, notwithstanding Mosher's better agreement with the
experiment.
Figure 4. Comparison of predicted (** : presented method, --# - - panel method [3]) and measured [3]
(- - s - -) excess pressure distributions for Z"1)241!7)27i and f"270)38 Hz: (a) u@"03; (b) u@"1803.

Figure 3. Comparison of predicted (** presented method with Z"1)241!7)27i, - - n - - present method with
Z"1)241#7)27i, - -# - - panel method [3]) and measured [3] (- - s - -) excess pressure distributions for
f"270)38 Hz and u@"2703.



Figure 5. Comparison of predicted (** : presented method, --# - - panel method [3]) and measured [3]
(- - s - -) excess pressure distributions for Z"0)414!2)875i and f"723)34 Hz: (a) u@"03; (b) u@"903.

Figure 6. Measured impedance values in reference [3].
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The tube-measured resistance and reactance data, Figure 6, for Mosher's experiment
appear to have large ranges of experimental uncertainties at the wave numbers (k"1)5065
and 4)0304/ft) of the computed cases. The phase shifts found in Figures 4 and 5 between the
measured and the present computed results are suspected to be due to the uncertainties in
the tube-measured and in situ impedance values. Figure 7 illustrates margins of error in the
computed excess pressure for the lower frequency using three slightly di!erent impedance
values Z"0)8083!5)8675i, Z"0)7315!5)5783i and Z"0)898!6)1867i, corres-
ponding, respectively, to re#ection coe$cients of=K "0)9562e*1613,=K "0)9562e*1603 and
=K "0)9562e*1623. Merely $13 phase variations in the re#ection coe$cients could account
for over 10 dB changes near pressure nodes. The corresponding results at the higher
frequency, Figure 8, with impedance values of Z"0)414!2)875i (=K "0)9158e*142>33),
Z"0)3703!2)7028i (=K "0)9158e*1403) and Z"0)452!3)0165i (=K "0)9158e*1443) show
smaller ranges of uncertainties than at the lower frequency, which is consistent for the
comparisons in Figures 4 and 5. The discrepancies may also be attributed to the locally
reactive impedance assumption [3, 13], which is beyond the scope of the present study.



Figure 7. Comparison of predicted (** Z"0)8083!5)8675i, - -] - - Z"0)898!6)1867i and - -# - -
Z"0)7315!5)5783i) and measured [3] (- - s - -) excess pressure distributions for f"270)38 Hz and u@"03.

Figure 8. Comparison of predicted (** Z"0)414!2)875i, - - ] - - Z"0)3703!2)7028i and - -# - -
Z"0)452!3)0165i) and measured [3] (- - s - -) excess pressure distributions for f"723)34 Hz and u@"03.
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8. CONCLUSIONS

An implicit time-domain compact scheme is proposed for studies and predictions of
lined-duct acoustics. Time-domain impedance-equivalent conditions have been successfully
implemented for all domain boundaries of a rectangular duct. The validity of the approach
has been established by comparison with analytic solutions. The scheme has further been
successfully applied for prediction of the interference of lined walls on the acoustic "eld of
realistic sources. The computed "elds using the present scheme are in good agreement with
experiment, and are substantially better than those previously reported using the
frequency-domain panel method. The phase shifts at low frequencies are ascribable to
sensitivity of the near "eld to uncertainties in impedance.
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